Simple spectral bounds for sums of certain Kronecker products
نویسنده
چکیده
Article history: Received 4 April 2014 Accepted 20 November 2014 Available online 2 December 2014 Submitted by Y. Wei MSC: primary 15A18 secondary 15A69
منابع مشابه
Matrix Equalities and Inequalities Involving Khatri-rao and Tracy-singh Sums
The Khatri-Rao and Tracy-Singh products for partitioned matrices are viewed as generalized Hadamard and generalized Kronecker products, respectively. We define the KhatriRao and Tracy-Singh sums for partitioned matrices as generalized Hadamard and generalized Kronecker sums and derive some results including matrix equalities and inequalities involving the two sums. Based on the connection betwe...
متن کاملThe Sums and Products of Commuting AC-Operators
Abstract: In this paper, we exhibit new conditions for the sum of two commuting AC-operators to be again an AC-operator. In particular, this is satisfied on Hilbert space when one of them is a scalar-type spectral operator.
متن کاملOn the spectral norms of r-circulant matrices with the biperiodic Fibonacci and Lucas numbers
In this paper, we present new upper and lower bounds for the spectral norms of the r-circulant matrices [Formula: see text] and [Formula: see text] whose entries are the biperiodic Fibonacci and biperiodic Lucas numbers, respectively. Finally, we obtain lower and upper bounds for the spectral norms of Kronecker and Hadamard products of Q and L matrices.
متن کاملOn the Spectral Norms of r-Circulant Matrices with the k-Fibonacci and k-Lucas Numbers
Abstract In this paper, we consider the k -Fibonacci and k -Lucas sequences {Fk,n}n∈N and {Lk,n}n∈N . Let A = Cr(Fk,0, Fk,1, · · · , Fk,n−1) and B = Cr(Lk,0, Lk,1, · · · , Lk,n−1) be r -circulant matrices. Afterwards, we give upper and lower bounds for the spectral norms of matrices A and B. In addition, we obtain some bounds for the spectral norms of Hadamard and Kronecker products of these ma...
متن کاملThe Sign-Real Spectral Radius for Real Tensors
In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.
متن کامل